Part Number Hot Search : 
STU16NB5 TK71250M PMN42XPE MAX3349E 0LZBC01 L2101 ENA663R3 AN3276
Product Description
Full Text Search
 

To Download IRF7805ZTRPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 06/30/05 irf7805zpbf hexfet   power mosfet notes   through  are on page 10 benefits very low r ds(on) at 4.5v v gs  ultra-low gate impedance  fully characterized avalanche voltage and current 100% tested for rg top view 8 12 3 4 5 6 7 d d d d g s a s s a so-8 v dss r ds(on) max qg (typ.) 30v 6.8m @v gs = 10v 18nc applications high frequency point-of-loadsynchronous buck converter for applications in networking & computing systems.  lead-free absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t a = 25c continuous drain current, v gs @ 10v i d @ t a = 70c continuous drain current, v gs @ 10v a i dm pulsed drain current p d @t a = 25c power dissipation  w p d @t a = 70c power dissipation  linear derating factor w/c t j operating junction and c t stg storage temperature range thermal resistance parameter typ. max. units r jl junction-to-drain lead  CCC 20 c/w r ja junction-to-ambient  CCC 50 max. 1612 120 20 30 -55 to + 150 2.5 0.02 1.6  downloaded from: http:///

 2 www.irf.com static @ t j = 25c (unless otherwise specified) parameter min. t y p. max. units bv dss drain-to-source breakdown voltage 30 CCC CCC v ? v dss / ? t j breakdown voltage temp. coefficient CCC 0.023 CCC v/c r ds(on) static drain-to-source on-resistance CCC 5.5 6.8 m ? CCC 7.0 8.7 v gs(th) gate threshold voltage 1.35 CCC 2.25 v ? v gs(th) gate threshold voltage coefficient CCC - 4.7 CCC mv/c i dss drain-to-source leakage current CCC CCC 1.0 a CCC CCC 150 i gss gate-to-source forward leakage CCC CCC 100 na gate-to-source reverse leakage CCC CCC -100 gfs forward transconductance 64 CCC CCC s q g total gate charge CCC 18 27 q gs1 pre-vth gate-to-source charge CCC 4.7 CCC q gs2 post-vth gate-to-source charge CCC 1.6 CCC nc q gd gate-to-drain charge CCC 6.2 CCC q godr gate charge overdrive CCC 5.5 CCC see fig. 16 q sw switch char g e (q gs2 + q gd ) CCC 7.8 CCC q oss output charge CCC 10 CCC nc r g gate resistance CCC 1.0 2.1 ? t d(on) turn-on delay time CCC 11 CCC t r rise time CCC 10 CCC t d(off) turn-off delay time CCC 14 CCC ns t f fall time CCC 3.7 CCC c iss input capacitance CCC 2080 CCC c oss output capacitance CCC 480 CCC pf c rss reverse transfer capacitance CCC 220 CCC avalanche characteristics parameter units e as si n gl e p u l se a va l anc h e e ner gy mj i ar a va l anc h e c urrent  a diode characteristics parameter min. t y p. max. units i s continuous source current CCC CCC 3.1 (body diode) a i sm pulsed source current CCC CCC 120 ( bod y diode )  v sd diode forward voltage CCC CCC 1.0 v t rr reverse recovery time CCC 29 44 ns q rr reverse recovery charge CCC 20 30 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) conditions max. 7212 ? = 1.0mhz conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 16a  mosfet symbol v ds = 16v, v gs = 0v v dd = 15v, v gs = 4.5v  i d = 12a v ds = 15v v gs = 20v v gs = -20v v ds = 24v, v gs = 0v t j = 25c, i f = 12a, v dd = 15v di/dt = 100a/ s  t j = 25c, i s = 12a, v gs = 0v  showing the integral reverse p-n junction diode. v gs = 4.5v, i d = 13a  v gs = 4.5v typ. CCC v ds = v gs , i d = 250a clamped inductive load v ds = 15v, i d = 12a v ds = 24v, v gs = 0v, t j = 125c CCC i d = 12a v gs = 0v v ds = 15v downloaded from: http:///

 www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 2.5 3.0 3.5 4.0 4.5 v gs , gate-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 150c v ds = 15v 20s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 16a v gs = 10v 0.01 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 20s pulse width tj = 25c    
      
     0.01 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 20s pulse width tj = 150c    
      
     downloaded from: http:///

 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 1 02 03 04 0 q g total gate charge (nc) 0 2 4 6 8 10 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v vds= 15v i d = 12a 0.2 0.4 0.6 0.8 1.0 1.2 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v 1.0 10.0 100.0 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec downloaded from: http:///

 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-ambient fig 9. maximum drain current vs. case temperature fig 10. threshold voltage vs. temperature 25 50 75 100 125 150 t j , junction temperature (c) 0 4 8 12 16 i d , d r a i n c u r r e n t ( a ) -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 1.0 1.2 1.4 1.6 1.8 2.0 2.2 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 100 t h e r m a l r e s p o n s e ( z t h j a ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthja + tc j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 ri (c/w) i (sec) 1.081 0.00043712.880 0.213428 24.191 2.335 11.862 52 downloaded from: http:///

 6 www.irf.com fig 13c. maximum avalanche energy vs. drain current 25 50 75 100 125 150 starting t j , junction temperature (c) 0 50 100 150 200 250 300 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 6.0a 6.9a bottom 12a fig 14a. switching time test circuit fig 14b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - fig 13b. unclamped inductive waveforms fig 13a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 12. on-resistance vs. gate voltage 2.0 4.0 6.0 8.0 10.0 v gs , gate-to-source voltage (v) 0.00 0.01 0.02 0.03 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ? ) t j = 25c t j = 125c downloaded from: http:///

 www.irf.com 7 d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 16. gate charge test circuit fig 15. 
 



   for n-channel hexfet   power mosfets  ?  !  ? "  ?  #$!  %& p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
 
  + - + + + - - -       '' ? ()""*+  ? '(&,' -  ? !  ""*'./'/ ? ' -  0'(-   fig 17. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr downloaded from: http:///

 8 www.irf.com control fet  

   

      
 
   
 
 
         
   
   
 
  !"    
 #
 $  
 %& !" 

  
    #  
  


       
 
  
    #' p loss = p conduction + p switching + p drive + p output this can be expanded and approximated by; p loss = i rms 2 r ds(on ) () + i q gd i g v in f ? ? ? ? ? ? + i q gs 2 i g v in f ? ? ? ? ? ? + q g v g f () + q oss 2 v in f ? ? ? ? "     (
  

          
  %& !" 
  
      


  
   

     %& !" 
  
 "   
   
 
 
    

  
              )    

  


  #
 
  






   
      


   

* 

 

   
   
   % +      
 
    
         
  


 

 
 

  
 %& !"   # 
    #  ,         #
    
 
  
  
-   .  
 /         
 #
   #  
  
 synchronous fet the power loss equation for q2 is approximated by; p loss = p conduction + p drive + p output * p loss = i rms 2 r ds(on) () + q g v g f () + q oss 2 v in f ? ? ? ? ? + q rr v in f ( ) *dissipated primarily in q1. for the synchronous mosfet q2, r ds(on) is an im- portant characteristic; however, once again the im- portance of gate charge must not be overlooked since it impacts three critical areas. under light load the mosfet must still be turned on and off by the con- trol ic so the gate drive losses become much more significant. secondly, the output charge q oss and re- verse recovery charge q rr both generate losses that are transfered to q1 and increase the dissipation in that device. thirdly, gate charge will impact the mosfets susceptibility to cdv/dt turn on. the drain of q2 is connected to the switching node of the converter and therefore sees transitions be-tween ground and v in . as q1 turns on and off there is a rate of change of drain voltage dv/dt which is ca-pacitively coupled to the gate of q2 and can induce a voltage spike on the gate that is sufficient to turn the mosfet on, resulting in shoot-through current . the ratio of q gd /q gs1 must be minimized to reduce the potential for cdv/dt turn on. power mosfet selection for non-isolated dc/dc converters figure a: q oss characteristic downloaded from: http:///

 www.irf.com 9 so-8 package outlinedimensions are shown in millimeters (inches) so-8 part marking       

  



 



 
  



 
 


 
 

 
 
 
  
 

 
 
 
 
 
 
           

 
 

 
         
                            

       

       
     !    " ##       $%   $                   
 

   $  $       &     
 
    

 
                      
       
  downloaded from: http:///

 10 www.irf.com 
  repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 0.94mh r g = 25 ? , i as = 12a.  pulse width 400s; duty cycle 2%.  when mounted on 1 inch square copper board   
   1 
  data and specifications subject to change without notice. this product has been designed and qualified for the consumer market. qualifications standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 06/05 330.00 (12.992) max. 14.40 ( .566 ) 12.40 ( .488 ) notes : 1. controlling dimension : millimeter. 2. outline conforms to eia-481 & eia-541. feed direction terminal number 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) notes: 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters(inches). 3. outline conforms to eia-481 & eia-541. so-8 tape and reeldimensions are shown in millimeters (inches) downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRF7805ZTRPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X